Pages

Sunday, 4 September 2016

How Streaming Works in HADOOP

In the above example, both the mapper and the reducer are python scripts that read the input from standard input and emit the output to standard output. The utility will create a Map/Reduce job, submit the job to an appropriate cluster, and monitor the progress of the job until it completes.

When a script is specified for mappers, each mapper task will launch the script as a separate process when the mapper is initialized. As the mapper task runs, it converts its inputs into lines and feed the lines to the standard input (STDIN) of the process. In the meantime, the mapper collects the line-oriented outputs from the standard output (STDOUT) of the process and converts each line into a key/value pair, which is collected as the output of the mapper. By default, the prefix of a line up to the first tab character is the key and the rest of the line (excluding the tab character) will be the value. If there is no tab character in the line, then the entire line is considered as the key and the value is null. However, this can be customized, as per one need.

When a script is specified for reducers, each reducer task will launch the script as a separate process, then the reducer is initialized. As the reducer task runs, it converts its input key/values pairs into lines and feeds the lines to the standard input (STDIN) of the process. In the meantime, the reducer collects the line-oriented outputs from the standard output (STDOUT) of the process, converts each line into a key/value pair, which is collected as the output of the reducer. By default, the prefix of a line up to the first tab character is the key and the rest of the line (excluding the tab character) is the value. However, this can be customized as per specific requirements.

No comments:

Post a Comment